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We live in a modern world supported by large, complex networks. Examples range from financial markets
to communication and transportation systems. In many realistic situations the flow of physical quantities in the
network, as characterized by the loads on nodes, is important. We show that for such networks where loads can
redistribute among the nodes, intentional attacks can leadto acascade of overload failures, which can in turn
cause the entire or a substantial part of the network to collapse. This is relevant for real-world networks that
possess a highly heterogeneous distribution ofloads, such as the Internet and power grids. We demonstrate that
the heterogeneity of these networks makes them particularly vulnerable to attacks in that a large-scale cascade
may be triggered by disabling asingle key node. This brings obvious concerns on the security of such systems.
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Complex networks are an essential part of a modern soci-
ety [1, 2]. It has been shown that many networks, such as the
world-wide web (WWW), the Internet, and electrical power
grids, present a surprisingly small average distance between
nodes and a highly organized distribution of links per node
[3, 4, 5]. Generally, the average distance will not be affected
by the removal of a random subset of nodes, but it will in-
crease significantly if the removed nodes are among the most
connected ones [3] (see also Refs. [6, 7, 8]). The existence of
a giant connected component in the network, however, does
not depend on the presence of highly connected nodes. For
instance, the WWW has homepages with many thousands of
hyperlinks and can remain well connected after the removal of
all homepages with five or more hyperlinks [9]. In addition,
the giant component itself is typically asmall-world network
[10] even after the removal of all highly connected nodes [11].
These pioneering studies on network security address mainly
static properties,i.e., the effect of different network architec-
tures. They suggest that the network connectivity, and hence
its functionability, is robust against random failure of nodes
[3, 6, 7] and to some extent is even robust against intentional
attacks [9, 11]. Here we show that for many physical net-
works, the removal of nodes can have a much more devas-
tating consequence when the intrinsicdynamics of flows of
physical quantities in the network is taken into account. Ina
power transmission grid, for instance, each node (power sta-
tion) deals with a load of power. The removal of nodes, either
by random breakdown or intentional attacks, changes the bal-
ance of flows and leads to a global redistribution of loads over
all the network. This can trigger a cascade of overload fail-
ures [12, 13], as the one that happened on August 10, 1996 in
the western United States power grid [14, 15]. Another exam-
ple is the Internet [16, 17, 18], where the load represents the
amount of information a node (router) is requested to transmit
per unit of time, and overloads correspond to congestion [19].
Internet collapses caused by congestion have been reported
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since its very beginning [20]. In this Rapid Communication,
we introduce a model for cascading failure in complex net-
works and show that it is applicable to realistic networks such
as the Internet and power grids.

For a given network, suppose that at each time step one unit
of the relevant quantity, which can be information, energy,
etc., is exchanged between every pair of nodes and transmitted
along the shortest path connecting them. The load at a node
is then the total number of shortest paths passing through the
node [21, 22, 23]. The capacity of a node is the maximum load
that the node can handle. In man-made networks, the capacity
is severely limited by cost. Thus, it is natural to assume that
the capacityCj of nodej is proportional to its initial loadLj,

Cj = (1 + α)Lj , j = 1, 2, ...N, (1)

where the constantα ≥ 0 is thetolerance parameter, andN
is the initial number of nodes. When all the nodes are on, the
network operates in a free-flow state insofar asα ≥ 0. But,
the removal of nodes in general changes the distribution of
shortest paths. The load at a particular node can then change.
If it increases and becomes larger than the capacity, the corre-
sponding node fails. Any failure leads to a new redistribution
of loads and, as a result, subsequent failures can occur. This
step-by-step process is what we call acascading failure, or a
cascade. It can stop after a few steps but it can also propagate
and shutdown a considerable fraction of the whole network
[24]. A fundamental question is: under what conditions can
such a global cascade take place?

Here we focus on cascades triggered by the removal of a
single node. If a node has a relatively small load, its re-
moval will not cause major changes in the balance of loads,
and subsequent overload failures are unlikely to occur. How-
ever, when the load at the node is relatively large, its removal
is likely to affect significantly loads at other nodes and pos-
sibly starts a sequence of overload failures. Our result is the
following: global cascades occur if (1) the network exhibits
a highly heterogeneous distribution of loads; (2) the removed
node is among those with higher load. Otherwise, cascades
are not expected. The distribution of loads is in turn highly
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correlated with the distribution of links: networks with het-
erogeneous distribution of links are expected to be hetero-
geneous with respect to load so that on average, nodes with
larger number of links will have higher load [22]. This re-
sult confirms the robust-yet-fragile property of heterogeneous
networks, which was first observed in Ref. [3] for the attack
on several nodes. The cascade effect is important, however,
because a large damage can be caused in this case by the at-
tack on asingle node. While a network with more links can
be more resistant against cascading failures, in practice the
number of links is limited by cost.

Now we provide evidence for our result. We study cascades
triggered by random breakdown and by intentional attacks. To
simulate the former, we choose a trigger at random among all
the nodes of the network, as can occur in networks such as
power grids [14]. In the case of attack the targeted node is se-
lected from those with highest loads or largestdegrees (num-
ber of links at a node). We consider heterogeneous networks
with algebraic (scale-free) distributionP of links, as observed
in real systems [2, 5, 25, 26],

P (k) ∼ k−γ , (2)

wherek denotes the degree andγ the scaling exponent, and
compare them with an equivalent homogeneous configuration.
These networks are generated according to the procedure in
Refs. [27, 28], where the nodes are connected randomly for
a given degree distribution, and self- and repeated links are
forbidden. The damage caused by a cascade is quantified in
terms of the relative sizeG of the largest connected compo-
nent,

G = N ′/N, (3)

whereN andN ′ are the numbers of nodes in the largest com-
ponent before and after the cascade, respectively.

Figure 1 shows the relative sizeG of the largest component
after cascading, as a function of the tolerance parameterα,
for a scale-free network. We can see that on averageG re-
mains close to unity in the case of random breakdowns but it
is significantly reduced under intentional attacks, even for α
unrealistically large. Indeed, the size of the largest component
is reduced by more than20% for α = 1, i.e., for a capacity
as large as two times the capacity required for the system to
operate when all the nodes function normally. This result is
in agreement with intuition, because in the case of random
breakdown the trigger is probably one of the many nodes with
small load, while in the case of intentional attack it is a node
with very large load. The damage is larger for smaller val-
ues ofα, as it is for load-based attacks when compared with
degree-based attacks. For instance, in the load-based attack
for α = 0.2, more than60% of the nodes are affected. For the
5000-node networks used in our simulations, it means that a
cascade triggered by the attack on a single node shuts down
and disconnects more than 3000 others!

Figure 2 shows the corresponding results for a homoge-
neous network with the same number of nodes and exactly
3 links per node. To make a meaningful comparison we dis-
play in the inset results for an algebraic network with about
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FIG. 1: Cascading failure in scale-free networks, as triggered by
the removal of a single node chosen at random (squares), or among
those with largest degrees (asterisks) or highest loads (circles), where
α is the tolerance parameter andG is the relative size of the largest
connected component. Each curve corresponds to the averageover
5 triggers and 10 realizations of the network. The error barsrepre-
sent the standard deviation. The networks are generated according
to the algebraic distribution (2). For the computations shown we set
γ = 3 and5000 ≤ N ≤ 5100. The average degree in the largest
component is〈k〉 ≈ 2.0.

the same average degree (actually larger, which strengthens
our conclusions). The homogeneous network does not expe-
rience cascading failures due either to random breakdown or
to intentional attacks forα as small as0.05. For the heteroge-
neous (scale-free) network, for the same value ofα, cascades
triggered by the attack on a key node can reduce the largest
connected component to less than10% of the original size,
as shown in the inset. Therefore, homogeneous networks ap-
pear to be more robust against attacks than the heterogeneous
ones. This conclusion does not rely on the particularities of
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FIG. 2: Cascading failure in homogeneous networks. All nodes are
set to have the same degreek = 3 andN = 5000. In the inset, the
networks are generated according to the algebraic distribution (2) for
k ≥ 2, γ = 3, andN = 5000. The resulting average degree is
〈k〉 ≈ 3.1. The legends and other parameters are the same as in Fig.
1.
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these models, as the same was also observed for classes of
networks with exponential and Poisson-like distributionsof
degrees (e.g., the Erdös-Rényi model [29]): their homogene-
ity makes them relatively resistant to cascades triggered by
attacks. The networks corresponding to the inset of Fig. 2 are
generated according to the same scaling distribution of those
in Fig. 1, except that in this case the minimal number of links
at a node is set to be 2. Therefore, this inset shows that the
fragility of scale-free networks is due to their heterogeneity
and does not rely on the presence of nodes with degree one,
which are easily disconnectable. Naturally, the increase of the
average degree reduces the damage of the cascade, as can be
seen from a comparison between Fig. 1 and the inset of Fig.
2.

Many real-world networks are heterogeneous and as such
are expected to undergo large-scale cascades if some vital
nodes are attacked, but rarely in the case of random break-
down. As an example we consider the Internet at autonomous
system level [30], which displays an algebraic distribution of
links [3]. The damage caused by triggers of higher load or de-
gree is much larger than that by random breakdown, as shown
in Fig. 3. The cascading failures are rarely triggered by ran-
dom breakdown forα > 0.05, but more than20% of the nodes
can be disconnected with the intentional attack on only one
node forα ≤ 0.4. We have also considered the electrical
power grid of the western United States [31]. The degree dis-
tribution in this network is consistent with an exponential[32]
and is thus relatively homogeneous. The distribution of loads,
however, is more skewed than that displayed by semirandom
networks [27, 28] with the same distribution of links, indicat-
ing that the power grid has structures that are not captured by
these models. As a result, global cascades can be triggered by
load-based intentional attacks but not by random or degree-
based removal of nodes, as shown in Fig. 4. We see that
the attack on a single node with large load reduces the largest
connected component to less than a half of its initial size, even
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FIG. 3: Cascading failure in the Internet at autonomous system level
[30]. The network hasN = 6474 nodes and〈k〉 ≈ 3.88 links
per node, on average. Each curve corresponds to the average over 5
triggers for attacks and 50 for random breakdown. The legends are
as defined in Fig. 1.
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FIG. 4: Cascading failure in the Western U.S. power transmission
grid [31], which hasN = 4941 and 〈k〉 ≈ 2.67. The average is
obtained via 5 triggers for attacks and 50 for random breakdown.
The legends are the same as in Fig. 1.

when the network is highly tolerant (e.g., α = 1).

Our result is thus that real networks are naturally evolved
to be quite resistant to random failure of nodes, but the pres-
ence of a few nodes with exceptionallylarge load, which is
known to be ubiquitous in natural and man-made networks,
has a disturbing side effect: the attack on a single important
node (one of those with high load) may trigger a cascade of
overload failures capable of disabling the network almost en-
tirely. Such an event has dramatic consequences on the net-
work performance, because the functionability of a network
relies on the ability of the nodes to communicate efficiently
with each other. What is the use, say, of having a phone if you
cannot call anybody?

We conclude with some thoughts on the meaning of our re-
sults for security. An effective attack relies on identifying vul-
nerabilities and is far from being random. Our society is geo-
graphically distributed in a way that natural hazards are byno
means random [33]. An example is the crowding of people,
communication, transportation, and financial centers around
seismic areas, like the Pacific Rim. Natural disasters and in-
tentional attacks can then have devastating consequences on
the complex networks underlying the society. These conse-
quences will be more severe if the damage on one or few
nodes is capable of spreading over the entire network. In
this sense a cascade-based attack can be much more destruc-
tive than any other strategies of attack previously considered
[3, 7, 8, 9, 28, 34, 35, 36].

The authors thank Réka Albert and Duncan J. Watts for
providing the Internet and power-grid data, respectively.This
work was supported by AFOSR under Grant No. F49620-98-
1-0400 and by NSF under Grant No. PHY-9996454.
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